Moment Pooling:

Gaining Performance and Interpretability Through
Physics Inspired Product Structures

Rikab Gambhir

With Athis Osathapan and Jesse Thaler

Email me questions at rikab@mit.edu!
Based on [RG, Osathapan, Thaler, 23XX.XXXX ( WIP)]
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[Komiske, Metodiev, Thaler, 1810.05165]

Typical Machine Learning Setup
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Collider Data — Latent Space — Observables

~1000 Dimensional ~10-100 Dimensional ~1-10 Dimensional

Pictured: An Energy Flow Network (EFN):
Particle weight: Energy Fraction
M|

O({p1s---»pm}) = F [ D zP(p:)

=1
L-dimensional latent representation, per particle
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https://arxiv.org/abs/1810.05165

[Komiske, Metodiev, Thaler, 1810.05165]

Typical Machine Learning Setup
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Collider Data — Latent Space Observables

~1000 Dimensional ~10-100 Dimensional ~1-10 Dimensional

Pictured: An Energy Flow Network (EFN): (How) can we understand and

M constrain this?
i—1 (How) can we be more efficient?
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https://arxiv.org/abs/1810.05165

The Moment-EFN

L a EFNs” can be thought of as taking the (weighted)
O(P) = F (<¢ >73) mean of a latent particle representation ¢ — Let’s

generalize to any moment!

Generalize!

OR(P) = Fy (<¢a>73 y <¢a1¢a2>7) 3 %1 ¥y <¢al°"¢ak>73)

Claim: This “Moment-EFN” gives more efficient representations!

/\ "Most of what | say here today also applies to Particle Flow networks or any other Deep-Sets inspired architecture!
N
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The Moment-EFN (Details)
r Set of momenta F a=1... L, the Latent Dimension index

_ a The Deep Sets Theorem guarantees that any
O(P) = F (<¢ >73) function on sets # can be written this way, for

L sufficiently complex F and ¢
()p = 2p(p:)

Generalize!

k = Highest order moment considered

—
Ok(P) = Fi ((9%)p, (0“1 0%) p , s (071...0%) )

18t Moment 2" Moment k™" Moment |

I ‘_]\"—I—l k+ L
AR A |

Claim: This “Moment-EFN” gives more efficient representations!
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NSF Al Institute for
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Event Representation
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Energy/Particle Flow Network

IRC-safe Neural Networks

Extending Deep Sets to Distributions [Energy Flow Networks, 1810.05165]

[Histogram Pooling, M. Cranmer et. al.]

Moment-EFNs

' Using summary statistics of
Ox(P) = Fy. (<¢a>73 ; (@™ g2 >7> RN (1) it >7,) energy distributions within
events to improve
performance per parameter



https://simdl.github.io/files/40.pdf
https://arxiv.org/abs/1810.05165

e.g. Jet Angularities

In the moment language, even integer f jet angularities < k = " moments!

AOP) =32 (m@ I ¢g> For the normal (k = 1) EFN,
p this would require learning
— (B B nonlinear functions!
= (1 >7> + (4 >7>

Test: Train three networks to regress A?) from 100k QCD jet samples, with a latent
dimension L:

e Linear Network: ¢, F are 1 layer, linear functions, L =2
e Small Network: ¢, F are 2 layers, each with 4 nodes and LeakyRelLU, L =2
e ‘“Large” Network: ¢, F are 3 layers, each with 32 nodes and LeakyRelLU, L =8

Expect k = 2 to outperform k = 1 for smaller networks!

/\ "Ask later about non-even or non-integer 8 angularities |
H
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e.g. Jet Angularities

In the moment language, even integer f jet angularities < k = " moments!

XO(P) =35 (nf +6f)

Probability Density

_ )+ (67),

Linear Networks

Small Network: EFN vs. 2"?-Moment EFN
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For the normal (k= 1) EFN,
this would require learning
nonlinear functions!

Small Networks

Small Network: EFN vs. 2"?-Moment EFN
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Large Networks

Large Network: EFN vs. 2"9-Moment EFN

I EFN
100k Samples 1 3
©:[32,32,32,8] 2"d-Moment EFN
F:[32,32,32,1]
LeakyRelLU

~6000 Parameters

Training times are identical for k =71 and 2!
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Learns the simplest latent representations!

Y=g

p'=n
04
00 ‘
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Encourage learning a diagonal basis in (5,¢) using L1 Regularization on F
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Linear Networks
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... At least one case where moment pooling gives “more interpretable” and

“more accurate” networks!




Linearization

In principle, with a large enough k, we O(P) = Fo (¢%)p

can approximate any” observable with + Faya, (9" )5

a linear F — like a Taylor expansion on + Fajaza; (" ¢™20%)p
distributions! A

Intuitively: The product structure of moments capture all the nonlinearities that
F would have captured

Can we understand the behavior of complex observables, like a Q/G
discriminant”, with just a few powers of k?

"For well-behaved functions

/\ “For classification tasks, we linearize the log likelihood and apply a sigmoid or softmax at the end |
H
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e.d. Quark/Gluon Discrimination
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Model Performance vs. Complexity
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Dataset of 500k Quark/Gluon Jets

Series of networks where ¢ has 3
layers and F is linear, but the width
of ¢ and the latent dimension is
sampled over — ensemble of
networks

Consider k=1,2,3, and 4

As with the previous example:
Moments help achieve the same
performance for less parameters!

See Backup slides for training details and dataset details
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e.d. Quark/Gluon Discrimination

Compare to an arbitrary F network ...

Model Performance vs. Complexity
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Saturates at AUC = 0.88, consistent with 1810.05165!

See backup slides for training details and dataset details.

/\ If we have time — see backup for performance versus latent dimension! Same performance for lower latent dlmenS|ons' |
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https://arxiv.org/abs/1810.05165

[Komiske, Metodiev, Thaler, 1712.07124;
Cal, Thaler, Waalewijn, 2205.06818]
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Four moments are not enough to build a linear approximation
o
Q/G discrimination cannot be easily captured by low-order moments! No simple
closed-form approximation

Comparable with the story of Energy Flow Polynomials (EFPs): Degree 4
EFPS achieve an AUC ~ 0.75, but need d > 7 to achieve an AUC above 0.8
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https://arxiv.org/abs/1712.07124
https://arxiv.org/abs/2205.06818

Conclusion Or(P) = Fi, ((6*) 5, (6™ 0) p 5 ey (9.0 ) )

The Moment-Pooling structure improves open Deep Sets-type networks —
better performance for smaller networks!

Can characterize how “simple” or “interpretable” an observable is by how many
moments it takes to capture it in a linear basis — angularities are interpretable,
Q/G discriminants may not be!
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Appendices
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Angularities Study (Details)

Dataset:

14 TeV Z+jet[g, uds] events generated in Pythia 8.226

Jets clustered using AK4 (Fastjet 3.3.0)

Keep p, between 500 GeV and 550 GeV, |y| < 1.7

100k Train, 2.5k Val, 2.5k Test

Angularities normalized to unit mean and standard deviation
Particle p; normalized to one.

Training:

Batch Size: 512
Epochs: 100
Optimizer: Adam with learning rate 0.001

o
o
o
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Q/G Study (Details)

Same dataset as angularity study, but with 500k training samples

Foreachof k=1 ... 4:

1. Choose random integers FSize and Deire from1...128,and Lfrom1 ... L

where Lmax= 128 for k = 1,64 for k = 2, 32 for k = 3, and 16 for k = 4.

a. Choose such that the number of network parameters is uniform in log scale.
b. Forthe linear F study, set F_,_=1.

Initialize N = 3 Moment-EFNs (with different seeds), where the F and ¢

networks have three layers of the above size and latent dimension L.
a. Forthe linear F study, instead choose the F network to be a single linear layer.

Train all N Moment-EFNs, using BCE loss, with the same hyperparameters
are the angularities study. Record their AUCs.

Record the mean and standard deviation of the N AUCs and plot a single
point. Repeat for 25 total points.

max’

2
3
4
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Quark/Gluon Discrimination: Latents
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